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Block 19:

The purpose of this project is to investigate backpropagation neural networks
for specific applications in passive electronic warfare (EW) involving

restoration of deinterleaved event trains to their original broadcast form.
This is different from traditional bit-error detection/correction which
relies on a prior knowledge of what the original bit stream looked like. In
electronic warfare it is unlikely that such prior knowledge will be
avaliable.,

Three major questions concerning neural networks of all types ares what
training equation to use, what values to select for the parameters for these
equations, and what is an appropriate network configuration. The authors of
the aforementioned questions make some rather positive claims for their
answers. Not much in the way of independent validation of these claims is
typically done. This project will concentrate first on a review of relevant
papers by various authors. Then one or more training techniques will be
selected based on the clarity of the write-ups and the reasonableness of
their approaches. A study will then be performed on the training techniques
to show how well they perform against a standard benchmark, the two-
dimensional XOR problem. This involves having the network learn to recognize
the XOR binary table. The study will take each author's training equation
and vary training equation parameter values and the network configuration.
From this variation, convergence maps can be drawn. Convergence maps are a
network performance display technique being developed under this project.
The advantage of the convergence map is a clear indication of the sensitivity
of the training equation to variations in training equation parameter values
and network configuration. The convergence map shows how to pick parameter
values and network configurations such that the network's ability to learn is
not sensitive to small changes in the values and configurations. Once
convergence maps have been drawn for different training equations; parameter
values and network configurations will be chosen from a section of the map
which shows quick convergence and a flat surface. Such a portion of the map
will illustrate a range of convergence times which are not sensitive to
parameter and configuration selection. The network, using the selected
equations, parameters, and configurations, will then be used in an attempt to
add missing events and remove extraneous events in a deinterleaved event
train.

The results of this research can be applied tothree major problem areas: I)
pulse-train restoration, 2) communications signal compression, and 3) data
compression. Pulse-Train Restoration: This is an important concern in
threat alert. When a radio frequency (RF) signal is deinterleaved, the

, pulses thus obtained are assigned to various pulse trains according to an
algorithm which determines how many pulse emitters are evident in the non-
deinterleaved pulse stream. It is not possible for the deinterleaving
process to be perfect. Sometimes it will happen that a pulse is added to a
train that it does not belong to. At other times it will happen that a pulse
is lost completely. The imperfect pulse trains thus generated lead to
imperfect threat alert. Neural networks can ease this problem by
generalizing the incoming pulse trains against known pulse trains and
restoring them to their original form. Communications Signal Compressions
An important concern is the future need to process communication signals
which are not now practical to try to compress and transmit due to huge data
volumes. The basic idea is to not-transmit binary data that can be predicted
or restored at the receiving end. This problem is related to data
compression discussed next. Data Compressions A serious problem which
exists in all weapons and communications systems is that of processing
limitations. By processing we mean not only the work done by the CIPU(s) but
also the work done by the sensors and the data bus. Data density within a
system drives the processing problem.



Preface

The purpose of this project is to investigate backpropagation neural networks
for specific applications in passive electronic warfare (EW) involving
restoration of deinterleaved event trains to their original broadcast form.
This is different from traditional bit-error detection/correction which
relies on a prior knowledge of what the original bit stream looked like. In
electronic warfare it is unlikely that such prior knowledge will be
avaliable.

Backpropagation neural networks are currently the most popular for
engineering applications. Given the amount of work being done on this
network type, it is likely that the literature will support the investigation
intended by this project. The IEEE Neural Network Conference Proceedings are
among those which contain a considerable number of papers on the training of
backpropagation neural networks. The Air Force Institute of Technology
(AFIT) has published theses on this subject as have a number of other
universities. DTIC (Defense Technical Information Center) holdings contain
reports on backpropagation implementations published by numerous researchers.

Three major questions concerning neural networks of all types arei what
training equation to use, what values to select for the parameters for these
equations, and what is an appropriate network configuration. The authors of
the aforementioned questions make some rather positive claims for their
answers. Not much in the way of independent validation of these claims is
typically done. This project will concentrate first on a review of relevant
papers by various authors. Then one or more training techniques will be
selected based on the clarity of the write-ups and the reasonableness of
their approaches. A study will then be performed on the training techniques
to show how well they perform against a standard benchmark, the two-
dimensional XOR problem. This involves having the network learn to recognize
the XOR binary table. The study will take each author's training equation
and vary training equation parameter values and the network configuration.
From this variation, convergence maps can be drawn. Convergence maps are a
network performance display technique being developed under this project. An
example three-dimensional map is shown in Atch 1. The advantage of the
convergence map is a clear indication of the sensitivity of the training
equation to variations in training equation parameter values and network
configuration. The convergence map shows how to pick parameter values ard
network configurations such that the network's ability to learn is not
sensitive to small changes in the values and configurations. Once
convergence maps have been drawn for different training equations; rarameter
values and network configurations will be chosen from a section of the map
which shows quick convergence and a flat surface. Such a portion of the map
will illustrate a range of convergence times which are not sensitive to
parameter and configuration selection. The network, using the selected
equations, parameters, and configurations, will then be used in an attempt to
add missing events and remove extraneous events in a deinterleaved event
train.

The results of this research can be applied to three major problem areas: 1)
pulse-train restoration, 2) communications signal compression, and 3) data
compression. Pulse-Train Restorationi This is an important concern in
RF threat alert. When a radio frequency (RF) signal is deinterleaved, the
pulses thus obtained are assigned to various pulse trains according to an
algorithm which determines how many pulse emitters are evident in the non-
deinterleaved pulse stream. It is not possible for the deinterleaving
process to be perfect. Sometimes it will happen that a pulse is added to a
train that it does not belong to. At other times it will happen that a pulse
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is lost completely. The imperfect pulse trains thus generated lead to
imperfect threat alert. Neural networks can ease this problem by
generalizing the incoming pulse trains against known pulse trains and
restoring them to their original form. Communications Signal Compression:
An important concern is the future need to process communication signals
which are not now practical to try to compress and transmit due to huge data
volumes. The basic idea is to not transmit binary data that can be predicted
or restored at the receiving end. This problem is related to data
compression discussed next. Data Compression: A serious problem which
exists in all weapons and communications systems is that of processing
limitations. By processing we mean not only the work done by the CPU(s) but
also the work done by the sensors and the data bus. Data density within a
system drives the processing problem. One way to limit the amount of data
flowing on the bus is to not send data which can be predicted or restored at
the receiving end. Given the nature of neural network technology, the need
to restore the data stream to its original form does not necessarily add to
the load on the CPU. The data compression problem is similar to the bit
compression problem except that bit compression works with binary values
while data compression works with analog values. Prediction of analog values
is likely to be considerably more difficult.
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Introduction to Experiments

In this first set of experiments we developed Lippmann's traditional
backpropagation neural network model with a modification by KlimasaLuskas.
This development was also assisted by Gustafson's notes. The modification by
Klimasauskas involved an exception to Lippmann's and Gustafson's
specification in that this project's model uses a positive bias term instead
of a negative bias term. For the cases tried in this project so far, the
negative bias term prevented the network from converging (learning the
intended mappings.) It should be recognized, however, that Lutey notes cases
where the negative bias term is required for convergence. It is possible,
therefore, that the negative bias term will be tried again later in the
project.

As a means of getting started, we experimented with Gustafson's fairly simple
representation of Lippmann's backpropagation mcdel. This was an effort to
learn the fundamentals of the model. We then moved on to implementing and
validating a generic three-layer model. All these start up efforts are
documented in Raeth's report of Jan 89.

Once the generic three-layer model was completed, a four-layer model was
generated and tested. Using these two models, runs were made to generate 2-
and 3-dimensional convergence maps based on the 2-dimensional XOR problem.
This involved training the network to map the XOR inputs to the desired
outputs. Variations were made of parameter values (gain, momentum, and
distribution) and network configuration (interlayer connections and number of
nodes in the hidden layer). Convergence maps were drawn to show the ability
of the network to learn the XOR input/output mappings. The results of these
experiments are described in the next chapter. Generally, there are some
rather dramatic variations in the network's ability to converge on (learn)
the desired mapping, depending on how one picked parameter values and network
configurations. However, the results show clearly how, for this class of
mapping, to pick values and configurations that are not sensitive to minor
variation in parameter values or network configuration. This will benefit
the project when we try the more complex mappings required to restore pulse
trains.

In looking over the experiment's results, the reader may be moved to ask why
certain other experiments were not tried. The answer is, in most cases, that
the computing facilities available to this phase of the project were
inadequate. We were on a DEC MicroVax III computer under Ultrix using
Pascal. Some runs presented here took a calendar-month to turn around in
background mode. Later phases of this project will be on the Cray computer
under COS using Pascal. Another reason is that this phase of the project was
concentrated on developing the general idea of convergence maps and getting
some experience with them. By the time all the experiments documented here
were finished, we had plenty of experience with convergence maps and were
ready to move on to a metric that would be more relevant to our applications.
Thus, for the next phase of the project, the metric will be changed from XOR
to random-bit-stream replacement.



Results of Experiments

The experiments introduced in the previous section will now be presented in
detail.

Three-layer backpropagation:

The three-layer backpropagation model is shown in Fig la.

BACKPROPAGATION NEURAL NETWORKS

Fig la: Three Layer Network Fig 1b: Four Layer Network

Output Layer

Second Hidden Layer

First Hidden Layer

Input Layer
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Five experiments with the three-layer backpropagation model were tried:

1) data lines marked "X" connected and Gain varied from 0 - 4 in 200
steps

2) data lines marked "X" disconnected and Gain varied from 0 - 4 in 200
steps

3) data lines marked "X" connected, Gain varied from 0 - 4 in 50 steps,
and Random Distribution for Initialization varied from U(-.l,.1) to U(-2,2)
in 50 steps for each step of Gain.

4) data lines marked "X" connected, Gain varied from 0 - 4 in 50 steps,
and Number of Hidden Layer Nodes varied from 1 - 10 in 10 steps for each step
of Gain.

5) data lines marked "X" connected, Gain varied from 0 - 4 in 50 steps,
and Momentum varied from 0 - 1 in 50 steps for each step of Gain.

Other facts about the runs are: Initialization: U(-.I,.1) for all but
Experiment #3; Training: random examples from a two-dinensional XOR table;
Computer: DEC MicroVax III under Ultrix using Berkeley Pascal; Weight
Updates: Asynchronous within layers, Synchronous between layers; Momentum: 0
except in Experiment #5; Number of Nodes in the Hidden Layer: 1; Acceptable
Error: 0.1 for each input/output pair. The random seed was the same for all
runs and the generator was reseeded with the original seed after the initial
weights were selected.
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Experiment 1: No training took place until Gain = .2, as indicated by Fig 2.
At that point, training was very slow until Gain = 0.5, at which point
training improved to Exposures = 1400 at Gain = 3.2, after which training was
again inhibited. We did not try to go beyond Gain = 4 because of the limited
computer capacity and because acceptable training had already taken place by
then. Exposures refers to the number of randomly selected examples of the
input/output mappings the network had to be "exposed to" before it converged.

Plot of liNuer of Training Kxposures vs. Gain
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Experiment 2: No training at all took place. The experiment was terminated
at Exposures = 100000 as an upper cutoff at which it was assLImed that no
training Would ever occur. This turned out to be an acceptable limit since
other network configurations converged in much less time. Fig 3 illustrates
the results of this experiment.

Plot of Mlunez of Training Exposures vs. Gain

A Rased on 2-D XOR Mapping (Nultiplq all Y values by 109 )
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Experiment 3: The point of convergence surfaces is the ability to see where
the regions of reliable convergence are. This experiment achieved its
fastest convergence time at Gain - 3.10 and Distribution = U(-.41,.41).
These parameters are near the outer edge of the low flat region near the
right wall. The conclusion is that these values are too near the wall for
convergence to be insensitve to small changes in their value. One would be
better advised to use something like Gain a 2 and Distribution = (-.5,.5)
when trying a new problem in this problem class. These values put one near
the middle of the low flat plain. Fig 4 illustrates the results of this
experiment. (Unfortunately, the graphics package we used does not give scale
numbering. Hopefully, we will be able to get a better package for the next
phase.)

RamaneumjMtinn cnnvpoanao map top WN
A

I

X

X: GA 1N(I - 41 V:IITMI.).(21

Figure 4. Backpropagation Convergence Map Using
Gain and Distribution
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Experiment 4: The fastest convergence ocCUred at Gain = 3.51 and Number 
of

Hidden-Layer Nodes = 10. However, note that after Gain = 2.4, variations in

Number of Hidden-Layer Nodes causes considerable unreliable 
network behavior.

Thus, there would be no predicting what would happen 
if a new problem were

tried. It would be better to try something like Gain = 1.6 
and Number of

Hidden-Layer Nodes = 2 in order to get into the low flat region. Fig 5

illustrates the results of this experiment.

A iLkpimpagation Conue, nee Map for WON

a

N
V

0

Figure 5. Backpropagation Convergence Map Using

Gain and Number of Hidden Nodes
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Experiment 5t Convergence was fastest at Gain = 2.53 and Momentum = .63.

The%* values are due to the pit which occurs in the 
middle of the high flat

region. Again, One should not choose these values when trying some 
new

problem. Rather, choose Gain = 1 (or so) and Momentum not greater 
that .5.

Figure 6 illustrates the results of this experiment.

IA Likpmpauation Conutogence Map tor YOR

0

W

0
K

A,
0

GA I N(O_- 4) fl U(_1

Figure 6. Backpropagation Convergence Map Using

Gain and Momentum

Conclusions From these experiments it is clear that convergence maps can

not be used to find the fastest values for training equation 
parameters and

network configurations. This is because the fastest values typically occur

in regions where small shifts in value can cause large changes in network

performance. It is better to choose values that are in the middle of a low

flat region. These values will give slower performance for the training

metric but offer more reliable performance for new problems 
in the same class

as the training metric.
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Four-layer Backpropagation:

The experiments performed above for three-layer backpropagation neural
networks were also performed for four-layer networks. The curves and
surfaces, of course, show that the four-layer nets perform differently. In
some cases, they perform better.

The following paragraphs report on 14 experiments. Eight experiments
developed 2-dimensional maps and the rest developed 3-dimensional maps. The
four-layer network is illustrated in Figure lb. The 2-dimensional maps were
developed by varying the network connection architecture and then varying the
values of the Gain parameter. Figure 7 charts all variations in connection
architecture considered in these experiments.

FIG 7. TWO-LAYER BACKPROPAGATION
UNE CLIPPING POSSIBILITIES

nkmanm Canotiond..

Unel Lne2 Line8

TeebekM Off Off Off

Teetbdb Off Off On

TeetMba Off On Off

TeetbeIl Off On On

Teettbel On Off Off

Tetbedl On Off On

Teetb xf On On Off

Teetbekd On On On

The remaining experiments produce 3-dimensional maps. One set of 3-
dimensional maps was done for the fully connected four-layer network
(Experiments 91 10, & 11) and another for the case where the input nodes were
not connected to the output nodes (Experiments 12, 13, & 14).
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2-Dimensional Maps: In these experiments, the eight layer-connection
architectures given in Figure 7 were used, one at a time, to solve the 2-
dimensional XOR problem. For each experiment Gain was incremented from 0 - 4
in 200 trials. The result of each trial then became a point on the plot.
Other facts about the runs are: Initialization: U(-.I,.l); Training: random
examples from a two-dimensional XOR table; Computer: DEC MicroVax III under
Ultrix using Berkeley Pascal; Weight Updates: Asynchronous within each
layer, Synchronous between layers; Momentumi 0; Number of Nodes in the
Hidden Layers: I; Acceptable Error: 0.1 for each input/output pair. The
random seed was the same for all runs and the generator was reseeded with the
same seed after the initial weights were selected.
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Experiment 1: Using architecture (a) (see Filename = Testbaka in Figure 7)
no training at all took place. This was not suprising since the three-layer
network which had no lines bypassing hidden layers also did not train at all.
The results of this experiment are illustrated in Figure 8.

Figure 8. Plot of Gain vs. Number of Training Exposures
9995

A Based on 2-D XOR Mapping (Multiply all Y values by 10)
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. .8 1.2 16 2.4 2.8 3.2 3.6 4

Ualue of Gain (Used TESIDAXA)
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Experiment 2: Using architecture (b) no training at all took place. This
was somewhat of a suprise since we had originally expected that training
would take place if at least one hidden layer had a bypassing line. As it
turns out, connecting a line from the input layer to only the second hidden
layer was insufficient to cause training. The results of this experiment are
shown in Figure 9.

Figure 9. Plot of Gain vs. Nunher of Training Exposures
9995

A Based on 2-D XOR Mapping (Multiply all V values by I)
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Ualue of Gain (Used TESTBBA)
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Experiment 31 Using architecture (c) training did take place. In this case
a line from the input layer directly to the output layer was sufficient.
This seems logical since the same comparable architecture was sufficient for
training the three-layer network. Training did not begin until Gain = .3
after which it was slow until Gain z 1.1. Convergence time gradually
decreased until Gain = 3.2 after which training was again inhibited. The big
difference between the results for this run and the one with three layers is
the lesser slope of the four-layer curve. From this one can surmise that if
bypass lines are only going to be put in between the input layer and the
output layer then the three-layer network will have the better performance
for this class of problem. The results of this experiment are shown in
Figure 10.

Figure 10. Plot of Gain vs. Number of Training Exposures
long=

4 Based on 2-D XOR Mapping (Multiply all V values by 109i
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Experiment 4s Using architecture (d) results almost exactly like the three-
layer fully connected model were achieved. In architecture (d) lines
connecting the input layer directly to the output layer and the second hidden
layer were installed. This experiment's results are illustrated in Figure
11. A thought which occurs here is that if the results between two networks
are similar then it is better to use the less expensive network. Expense
increases as the fan-in to a given layer of nodes increases, as the number of
nodes increases, and as the number of layers of nodes increases.

Figure Ii. Plot of Gain vs. NumJer of Training Exposures

A Based on 2-D XOR Mapping (MultipI9 all V values 1)9 191)
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Experiment 5: Using architecture (e) no training at all took place. AGain
we see a case where installing only one set of bypass lines in a two-layer
network was insufficient to permit convergence. The results of this
experiment are illustrated in Figure 12.

Figure 12. Plot of Gain vs. NuMber of Training Exposures
99NN
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Experiment 6: Using architecture (M) we get an interesting result. There is
no training at all until Gain = .85 but there is no point at which training
is inhibited after that. The minimum training time is higher than in other
experiments but the average training time is lower. It is for this reason we
chose this architecture to develop 3-dimensional maps in Experiments 12, 13,
and 14. The results of this experiment are illustrated in Figure 13.

Figure 13. Plot of Gain vs. Number of Training Exposures
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Experiment 7: Using architecture (g) we get a curve that starts off like the

three-layer's curve but training gets inhibited at a much earlier time, Gain

=2.75. The results of this experiment are illustrated in Figure 14.

Figure 14. Plot of Gain vs. Num~ber of Training Exposures

A Rased on 2-D YOR Mapping (Multiply all V values byi 100)

981

8O34

5884_____________

~3 1l
X

2 IL

.4 .8 1.2 1 6 2.4 2.'8 3'2 3.6 4

Value of Gain (Used TESTBAXG)

17



Experiment Si Using architecture (h), the fully connected architecture, we

have a curve even worse than that of Experiment 7. Although good training
starts early on as in the other experiments where training occured, training
is inhibited early too, at Gain = 2.5. In this case too, there is some
unreliability which appears at Gain = 3.0. The results of this experiment
are illustrated in Figure 15.

Figure 15. Plot of Gain vs. NuMber of Training Exposures
1 l8 1  

l A
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3-dimensional maps: In these experiments, two different connection
architectures were used to solve the 2-dimensional XOR problem. For each
experiment, Gain was incremented from 0 to 4 in 50 trials and either
Distribution, Number of Hidden Nodes, or Momentum was incremented for each
increment of Gain. The result of each trial then became a point on the 3-
dimensional surface. Other facts about the runs are: Initialization:
U(-.I,.I) except in cases where Distribution was one of the varied
parameters; Training: random examples from the two-dimensional XOR table;
Computer: DEC MicroVax III under Ultrix using Berkeley Pascal; Weight
Updates: Asynchronous within layers, Synchronous between layers; Momentum: 0
except in cases where Momentum was varied; Number of Nodes in Hidden Layers:
I except in cases where Number of Nodes was varied; Acceptable Error: 0.1 for
each input/output pair. The random seed was the same for all runs and the
generator was reseeded with the same seed after the initial weights were
selected.

The connection architectures used in this experiment were 1) fully connected,
input connected to both the output and the hidden layers and 2) input not
connected to output. The experiment results given below compare the two
architectures' ability to develop the 2-dimensional XOR mappings.

Variations of Momentum: Momentum was varied from 0 to 1 inclusive in 50
steps for each of 50 steps of Gain. Architecture 1): The results with this
architecture were similar to that of the fully connected three-layer
architecture. As Momentum increases, it has less and less a desirable
affect. As Gain increases, Momentum lends less and less assistance to
convergence. The fastest convergence occurred at Gain = 3.61 and Momentum =

0.57. However, that is deep in a pit so it is better to choose something
like Gain = 1.5 and Momentum = 0.02, values that are in the middle of the low
flat plain. The plot for this experiment is shown in Figure 16.
Architecture 2): This experiment showed very little opportunity for reliable
convergence, only with high values of Gain and low values of Momentum. It
would be interesting to extend this plot to Gain = 10, something we may do in
the next phase. Convergence was fastest for Gain = 3.51 and Momentum = 0.45.
Very near the back-right wall. Figure 17 shows the plot.
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Figure 17. Input not connected to output using Gain &
Momentum

21



Variations of weight initialization distribution: To initialize the network
weights, values were chosen randomly from a uniform distribution which varied

in 50 steps for each of 50 increments of Gain. The variation was U(-.I,+.I)

to U(-2, +2) inclusive. Architecture 1)1 Distribution variations had very
little affect on this architecture's ability to converge. Notice some

contrary regions, however. Convergence is difficult for very low values of
Gain and very high values of Distribution. Very high values of Gain for most
values of Distribution also negatively impact convergence except in the rare
case where there is a combination of very high Gain and very large
Distribution. Convergence was fastest for Gain a 3.92 and Distribution - 2,
in the flat plain which appears in the back-right of the plot. See Figure 18
for this plot. Architecture 2) For this architecture, convergence almost
never occurred except for small Distributions. As Gain increased,
Distribution generally helped but the affect was minimal. The fastest
convergence occurred at Gain a 0.82 and Distribution = 2, a deep pit. Figure
19 illustrates these results.
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Figure 19. Input not connected to output using
Gain & Initialization Distribution
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Variations of number of hidden nodesa The number of hidden nodes in both
layers was varied from 1 - 10 in 10 steps for each of 50 increments of Gain
so that each hidden layer always had the same number of nodes. Only 10 nodes
were run since the amount of computer time needed would have been too great
to go higher. Architecture I): Like the fully connected three-layer
architecture, variations of number of hidden nodes led to tremendous
unreliability in convergence. The fastest time was recorded at Gain - 2.09
and Number of Nodes - 8, in the middle of an unreliable region. See Figure
20 for this plot. Architecture 2) This was a most surprising result in
light of the other plots from this architecture. In this case, the second
architecture resulted in better performance. The plot is generally like a
slide that angles downward, left to right. Only at very low values of Gain
is this not so and even then at Nodes = 1. Convergence was fastest at Gain
3.76 and Nodes - 10. Figure 21 has this plot.
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Conclusions

It is obvious from the convergence maps shown in this report that the node
connection architecture has a dramatic affect on the network's ability to
learn a set of vector mappings. Less dramatic, but just as important, are
the values of the network's training equation parameters. Preliminary tests
have suggested that these parameters need to be set not to the values which
give fastest learning for a given metric but to those values which give
reliable learning. Reliable learning ability is shown on the maps as low
flat plains. In most of the maps shown in this report, the fastest learning
occurred in a pit found on a high flat plain.

A concern which came about as a result of this study has to do with the basic
theory of backpropagation. The theory says that backpropagation neural
networks are guaranteed to learn an arbitrary set of vector mappings. The
theory does not say how long it will take to learn a given set of vector
mappings. This is no problem when the data domain is fixed. However, in
most military applications, the data domain is not fixed. This leads to
questions on what happens if the number of vector mappings to be learned
increases and what happens if the number of components in the vectors
increases. Certainly, one would expect the number of exposures required for
learning to increase. But, what is the rate of increase? Is it linear,
geometric, or exponential. It is not sufficient to say, "Well, just put it
on your Cray and let it run". In military applications, we have to be able
to guarantee reprogrammability within a given amount of time. We will
address these issues in the next phase of this project when we begin using
the random bit replacement metric.
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ATCH I

Description of Convergence Maps

Convergence maps are N-dimensional plots which show the ability of a neural
network to converge on (learn) a given training metric. There are several
training metrics in common use for testing input/output vector mapping
networksi . Among these ares 2-dimensional XOR, 3-dimensional XOR, 4-2-4
encoder, 2-bit adder, contiguity patterns, the prostrate eight, and random-
bit-stream replacement. The traveling salesman optimization problem is a
classic metric for testing energy minimization networks.

Convergence maps show the performance of a neural network under varying
training equation parameters and network configurations. Variations of
parameter and configuration are plotted against the time it takes the network
to become trained under a given variation. By observing the surface, one can
see directly how to set the values of the training equation and the network
configuration for a given problem class in order to achieve convergence which
is not sensitive to small variations in parameter value or network
configuration. A convergence map be plotted for N - 2, 3, or 4 dimensions.
The plot is based on value variations of N-i training equation parameters or
network configurations. The Nth dimension is always time-to-convergence.

For instance, in classical backpropagation (see Lippmann), there are two
training equation parameters, Gain and Momentum. Gain is related to the
speed of training. Momentum is related to the expectation that the result of
training at time t+l will be the same as the result of training at time t.

The convergence map in Figure Al-I shows how the classical backpropagation
neural network behaves when being trained to recognize an XOR table. To get
this map, the Gain was varied from 0 - 4 in 50 steps and the Momentum was
varied from 0 - 1, each in 50 steps for each value of gain. Training was
halted at 100000 trials for any combination of Gain and Momentum that did not
recognize the table (conerge) in that many trials. The map shows that the
best picks for Gain start after about .5 and that Momentum has less and less
a desirable affect as Gain increases. The axes for this map, and all maps
in this report, are explained in Figure AI-2.
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ATCH 2
Pulse-Train Restoration Problem Statement

When a radio frequency (RF) signal is deinterleaved, the pulses thus obtained
are assigned to various pulse trains according to the deinterleaver's
algorithm. For instance, the deinterleaver may decide that there are two
separate pulse trains contained in the received RF signal. The deinterleaver
will then assign the pulses it sees to one of the two trains according to the
deinterleaving algorithm. The number of trains perceived to be present is
not a constant.

Since the receiver system and the deinterleaving process are not perfect, it

can happen that pulses are assigned to the wrong chain and that pulses are
missed altogether. Thus, it can happen that any given pulse train will have
wrongfully added pulses and/or missing pulses. During the threat alert
process, it would be useful if the pulse trains could be restored to their
original form.

If one assumes that the deinterleaving process is correct most of the time,
one could use the past history of any pulse train to predict the future form
of the pulse train. The predicted form of the pulse train could be compared
to the deinterleaved form of the pulse train. Discrepancies could be fed
through an algorithm or set of rules to determine if a given pulse should be
removed, a p.:Ise added, or the chain left as is.

An early research goal should be to exceed 50% probability of correct
restoration with a confidence level of 99%

3
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